生物科技吧
关注: 3,364 贴子: 6,050

生物科技吧,生物科技信息平台……

  • 目录:
  • 科技周边
  • 0
    第一步,SIRT1与α-MHC互作,降低α-MHC乳酸化水平 使用p300酰基转移酶激活剂干预未能完全挽救α-MHC K1897乳酸化以及α-MHC-Titin相互作用。为进一步阐明调控机制,确定α-MHC K1897相关的脱酰酶。Sirtuin家族蛋白是关键的脱酰酶,选择SIRT1–7作为脱乳酸化α-MHC的候选蛋白,发现只有SIRT1显著降低α-MHC乳酸化水平(图2a-b)。体内和体外Co-IP实验显示,SIRT1与α-MHC相互作用(图2c-d)。构建α-MHC不同截断体并进行Co-IP实验,发现α-MHC与SIRT1相互作用的结构域为mmCoA、MIT-
  • 0
    酪胺染料的标记,可能会遇到的问题: 1.非特异性染色:酪胺染料在被HRP催化后,氧化的酪胺具有高度反应性,可能与样本中多个位置的蛋白质发生共价结合,导致背景信号增加。 建议:优化过氧化氢和酪胺的浓度,能减少非特异性染色。降低酶反应时间也有助于减少背景信号。这些都需要客户根据自己的实验进行调整,我们无法给他们一个确定的浓度去尝试。因为不同的实验,环境,操作,都会出现不同的结果。 2.过度放大导致的信号溢出:TSA是
  • 0
    2013年,诺贝尔生理学或医学奖颁发给发现“细胞的囊泡运输调控机制”的三位科学家。囊泡运输构建了人体生理学和病理学过程中的“智慧物流运输系统”,负责细胞间的物质递送和信息通讯。因此,细胞外囊泡被视为重要的生物标志物和天然的运载工具,在智能药物递送、重大疾病精准诊疗等领域展现了巨大的应用潜力。 然而在常规培养条件下,供体细胞往往存在分泌效率有限、外囊泡产量低等技术问题,极大的限制了细胞外囊泡的实际应用。为
  • 0
    p300是α-MHC K1897 乳酸化的酰基转移酶 第一步,p300过表达显著上调α-MHC的乳酸化 研究显示p300可以作为酰基转移酶,催化组蛋白的乳酸化。体外和体内Co-IP实验发现p300与α-MHC相互作用(图1e-f)。另外,体外和体内Co-IP实验证实,p300激活剂可以增强α-MHC K1897的乳酸化,而p300抑制剂减弱α-MHC K1897的乳酸化(图1g-j)。此外,在心衰和心肌损伤中,Co-IP分析显示,无论是否有Ang II刺激,p300与α-MHC在H9c2细胞和小鼠心肌组织中均相互作用且没有显著变化(图1k-l)
  • 0
    动脉血栓形成是全球死亡和残疾的主要原因,目前尚无有效的生物测定方法进行临床预测。作为动脉血栓形成的一个象征性特征,血管严重狭窄会产生高剪切、高梯度的流动环境,促进血小板聚集至血管闭塞。在这里,我们提出了一种血栓分析方法,用于监测在这种生物力学条件下血栓形成的多维属性。通过这种分析,我们证明不同的受体-配体相互作用对血栓的组成和活化状态有显著影响。我们对高血压和老年人的调查显示,生物力学血栓形成加剧
  • 0
    TRIM25是一种泛素连接酶,是否参与调控ITPKB蛋白稳定性积累呢? 证据1:研究人员发现敲低Trim25,显著增加ITPKB蛋白积累;Trim25过表达则相反抑制其积累(图1a-b)。 证据2:加入蛋白酶体抑制剂MG132后,Trim25过表达诱导的ITPKB水平降低效应被逆转(图1c),表明Trim25通过蛋白酶体途径降低ITPKB的稳定性。 证据3:采用放线菌酮(CHX)追逐实验,发现Trim25敲低增加ITPKB蛋白的半衰期,Trim25过表达则相反(图1d-e)。 证据4:耐药细胞内源Co-IP分析显示Trim25敲低显著
  • 0
    TRPML1与ARL8B的结合是TRPML1介导的溶酶体胞吐和铁死亡抵抗所必需的 第一步,TRPML1与ARL8B互作 TRPML1过表达促进溶酶体在质膜上的对接和溶酶体胞吐。研究显示溶酶体通过与ARL8B和微管相关的激酶结合,从核周区转移到质膜。Co-IP分析显示TRPML1与ARL8B互作(图1d-e)。表明TRPML1可能通过与ARL8B结合,增强溶酶体向细胞膜的运动和溶酶体胞外分泌。 第二步,确定TRPML1与ARL8B互作的具体位置 为了找出TRPML1与ARL8B互作的具体位置。构建一系列ARL8B截断体,进行Co-IP实
  • 0
    展会序言: 畜牧业是关系国计民生的重要产业,是农业农村经济的支柱产业,是保障食物安全和居民生活的战略产业,是农业现代化的标志性产业。为进一步推进西部及全国畜牧业高质量发展,构建畜牧业绿色低碳高质量发展新格局,促进西部地区畜牧业的交流与合作,展示最新科技成果,推动产业转型升级,我们诚挚地邀请您参加即将于2024年11月29-30日在重庆国际博览中心举办的“2024西部畜牧业展览会”。本届畜博会立足西部,辐射全国,预计展
  • 0
    TRIM25是一种泛素连接酶,是否参与调控ITPKB蛋白稳定性积累呢? 证据1:研究人员发现敲低Trim25,显著增加ITPKB蛋白积累;Trim25过表达则相反抑制其积累(图1a-b)。 证据2:加入蛋白酶体抑制剂MG132后,Trim25过表达诱导的ITPKB水平降低效应被逆转(图1c),表明Trim25通过蛋白酶体途径降低ITPKB的稳定性。 证据3:采用放线菌酮(CHX)追逐实验,发现Trim25敲低增加ITPKB蛋白的半衰期,Trim25过表达则相反(图1d-e)。 证据4:耐药细胞内源Co-IP分析显示Trim25敲低显著
  • 0
    第一步,TRPML1是通过泛素蛋白酶体途径降解的 蛋白酶体抑制剂MG132以浓度依赖的方式增强TRPML1的蛋白丰度,而BafaA1对TRPML1没有影响,表明TRPML1是通过泛素蛋白酶体途径降解的(图1a)。 第二步,β-TrCP可能是TRPML1泛素化的主要E3连接酶 Co-IP实验显示,β-TrCP过表达上调TRPML1泛素化水平,β-TrCP ΔF的失活体则不能(图1c);此外,下调β-TrCP可降低TRPML1泛素化水平(图1d)。另外,Co-IP分析发现,K48R泛素突变体破坏了TRPML1的多泛素化,而K63R突变体则没有。此外
  • 0
    型号W9508 CPU:intel 8352V 2.1GHz 36核 *2 GPU:4090 24G*8(单卡2槽位) 内存:64G*16 DDR4 RECC3200 硬盘:480G SSD*2,7.68T NVME*1 raid卡:2G缓存,支持raid0、1、5 网卡:双10G电口*1,双25G光口*1(配4个25G-mm850-D多模光模块) 电源:2700W*4 电源线:C13转C14 10A 1.5米电源线*4 有需要直接私信
  • 0
    第一步,筛选调控TRPML的上游分子 为了确定癌细胞中调节溶酶体胞吐的上游途径,选了一个含有644种化合物的激酶抑制剂文库进行筛选(工作量有点大),结果发现:具有抑制功能的小分子大部分是PI3K和AKT抑制剂,其中AKT抑制剂对溶酶体胞吐的抑制作用最强,活化AKT的表达则增强癌细胞中溶酶体的胞吐(图1a-c)。 第二步,确定AKT是TRPML的上游分子 过表达AKT1增加TRPML1的蛋白丰度(图1e),敲减或抑制AKT则降低TRPML1的蛋白丰度(图1f);不影响TRPML1的mRN
  • 0
    笔者关注到,著名期刊elife被科睿唯安官方On Hold elife近年影响因子 elife在生活和生医科学的各个领域发表最高科学标准和重要性的作品。 2023年,eLife取消掉期刊发文的基本门槛——审稿人拒稿制度。该刊的投稿人将不会再因为审稿人的负面意见而被编辑拒稿。新的发表方式将把论文与审稿人的意见一起发表,并带上一份编辑评估意见以说明该研究工作重要性和严谨性。论文发表后,作者可以决定是否修改论文以回应任何评议意见。 不知道此次ON HOLD
  • 0
    课题组前期研究发现,催化多不饱和脂肪酸(PUFAs)氧合的12-脂氧合酶(ALOX12)是高水平ROS诱导的铁死亡应答的关键因子。在本研究中,PHLDA2是否通过ALOX12的ROS调控系统诱导铁死亡。 第一步,确定ROS铁死亡系统的相互作用分子 通过SFB标签抗体,进行IP-MS和IP-WB发现PHLDA2与ALOX12互作(图1a、b)。进一步通过内源抗体Co-IP双向验证PHLDA2与ALOX12存在相互作用(图1c-d)。而免疫荧光共定位实验发现PHLDA2和ALOX12能够同时共定位于细胞质(图1e),进一步佐证了PHLDA2-ALOX12
  • 0
    ChIP-Seq分析发现YAP-TEAD1在AARS1的启动子上富集,表明AARS1是YAP-TEAD1的下游靶基因。此外,ChIP实验显示YAP-TEAD1与AARS1的启动子结合。荧光素酶报告基因实验显示,YAP-TEAD1的过表达以剂量依赖的方式增加了WT载体的活性,但不影响突变载体的活性。结果表明,AARS1是YAP- tead1的直接靶基因,细胞内乳酸驱动AARS1和YAP- tead1之间的正反馈回路。 全文分享:【《JCI》解读:肿瘤乳酸化修饰与泛素化修饰对抗!丙烯酰tRNA合成酶AARS1乳酸化修饰YAP复合体促进信号传导】。
  • 0
    一、百萤 pH荧光探针Protonex 红600参数 Ex(nm) 576 Em(nm) 597 分子量 698.94 溶 剂 DMSO 存储条件 在-15℃以下保存,避光防潮 二、百萤 pH荧光探针Protonex 红600概述 Protonex Red染料显示出pH依赖性荧光。与大多数在较高pH下荧光更强的荧光染料不同,酸性条件可增强Protonex Red染料的荧光。随着pH从中性降低到酸性,Protonex Red染料的荧光急剧增加。细胞外缺乏荧光消除了洗涤步骤。Protonex Red染料为监测酸性细胞区室(如内体和溶酶体)提供了强大的工具。Protonex Red染料
  • 0
    铁死亡是由膜磷脂上的多不饱和脂肪酸部分过度过氧化引起的。常见的铁死亡反应由GPX4依赖和非GPX4依赖两种方式调节,前者主要有三种磷脂(磷脂酰乙醇胺[PE]、磷脂酰丝氨酸[PS]和磷脂酰肌醇[PI])参与铁死亡。PHLDA2是一种对磷脂具有高亲和力的膜相关蛋白,ALOX12能够通过其脂氧合酶活性特异性氧化游离的多不饱和脂肪酸。那么,不依赖GPX4的PHLDA2是如何启动铁死亡的? 第一步,PHLDA2能够将ALOX12募集到特定的磷脂上 研究PHLDA2与不同类型磷脂的结合亲和
  • 0
    第一步,PHLDA2与ALOX12功能相关性 建立ALOX12-tet-on细胞。ALOX12促进了细胞铁死亡,在失去PHLDA2后,ALOX12诱导的铁死亡水平显著降低(图1e),脂质过氧化水平也被消除(图1f)。表明ALOX12介导的脂质过氧化和铁死亡依赖于PHLDA2的表达。 第二步,PHLDA2与ALOX12的互作是诱导铁死亡所必需的 另外,PHLDA2缺失后,野生型(WT) PHLDA2的表达恢复了铁死亡应答,而单独重新表达与ALOX12结合的PHLDA2-PH亦足以恢复铁死亡反应,PHLDA2-ΔPH则不能(图1g)。在人类肿瘤标本COSMIC数
  • 0
    第一步,确定与下游蛋白分子的互作关系 进行内源Co-IP实验和GST pulldown实验,发现USP8与GPX4互作(图1a-c)。 第二步,USP8与GPX4蛋白结合的具体位置 为了探索USP8与GPX4蛋白结合的位置,针对USP8构建不同的突变体分别进行Co-IP实验,发现USP8通过 aa1-313、aa715-1118区域与GPX4结合(图1d-e)。 第三步,USP8如何影响GPX4蛋白的稳定性 USP8是一个去泛素化酶。Co-IP分析发现,USP8能降低GPX4的泛素化水平,而酶非活性突变体USP8-c786a则不能去除GPX4的泛素链,表明USP8通过其
  • 0
    常规清洁方法 去除内部物品并排水 首先要把培养箱里的东西全部取出,放尽培养箱里的水(如三蒸水等)。然后可以用纯水或蒸馏水对培养箱内部进行多次冲洗,这有助于去除残留的培养基、细胞碎片等杂质。 擦拭内壁 酒精擦拭: 可以使用75%酒精对培养箱内壁进行擦拭,这是比较常用的方法。有的实验室会擦拭3遍,擦拭过程中要注意不要遗漏任何角落。擦拭后可以通风10分钟左右,让酒精挥发干净,避免对后续培养产生影响。 也有使用70%乙醇进行
    Sunshine_wlk 10-17
  • 1
    惠普生物有多少研发人员?
  • 1
    西安惠普生物科技有限公司怎么样?
    fo廴哦iye 10-16
  • 0
    乳酸是体内代谢调控的支点,在心脏肥大、损伤和心力衰竭中发挥重要作用,乳酸是心脏的重要能量底物,α-肌球蛋白重链(α-MHC)与Titin的肌节相互作用对心脏结构和收缩至关重要。然而,在正常和衰竭的心脏中,调节这种相互作用的机制仍然未知。 2023年7月,中国医科大学附属第一医院孙英贤教授团队在Cell Research(IF=28.1)上,发表“α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure”的研究成果。揭示
  • 0
    初步确定下游的蛋白分子 通过WB检测铁死亡相关蛋白,发现敲低显著降低GPX4蛋白的表达(图1a-b),但不影响其RNA水平(图1c)。同样抑制剂亦能降低GPX4的蛋白水平(图1d)。构建GPX4 WT及其酶促失活突变体U46S进行功能实验,证实过表达GPX4 WT蛋白在抑制RSL3诱导的铁死亡方面具有功能(图1e)。放线菌酮(CHX)试验表明,敲低USP8缩短GPX4蛋白的半衰期(图1f)。表明USP8可能作为一种去泛素化酶在翻译后水平调节GPX4的蛋白丰度。 蛋白酶体介导的降解系统和自噬-
  • 0
    第一步,AARS1分别乳酸化YAP和TEADK90和K108位点 乳酸化蛋白质组学KEGG分析富集多种通路,重点集中在Hippo信号通路上,YAP和TEAD1分别在K90和K108位点发生了乳酸化(图1a-b)。IP-WB检测也显示YAP-TEAD发生乳酸化(图1c)。此外,构建YAP K90R和TEAD1 K108R突变体进行IP-WB检测显示没有发生乳酸化(图1d)。另外,葡萄糖剥夺降低YAP-TEAD1的乳酸化水平,而乳酸处理明显恢复其的乳酸化水平(图1e-f)。 第二步,AARS1与YAP-TEAD1相互作用 Co-IP实验发现AARS1与YAP-TEAD1互作(图1g
  • 1
    主营敏感货出口物流,承接带电,食品,药品,化妆品,液体,粉末,化工品等等,双清包税到门专线:欧洲,加拿大,美国,英国,澳大利亚,新西兰,墨西哥,巴西,沙特,东南亚国家等!欢迎询价!路线合适的话可以试一下拓宽出货渠道,期待合作共赢!
  • 13
    国外生物样本试剂进口到国内清关运输温度可控 h663664
  • 10
    我公司长期收购库存积压呆滞,临期,过期食品添加剂,食品配料,营养强化剂,增稠剂,甜味剂,淀粉,奶粉,奶油,奶酪,植物油,甘油,植脂末,糊精,三氯蔗糖,低聚果糖,结晶果糖,赤藓糖醇,聚葡萄糖,白砂糖,糖精钠,海藻酸钠,魔芋粉,阿斯巴甜,甜蜜素,香兰素,乙基麦芽酚,乳酸,酪蛋白,明胶,果胶,黄原胶,卡拉胶,阿拉伯胶,大豆分离蛋白,乳清蛋白粉,葡萄糖,可可粉,可可脂,可可豆,甘露醇,柠檬酸,苹果酸,胡萝
  • 0
    第一步,探讨PRMT1在肝细胞癌中上调的机制 已有结果显示,PRMT1的蛋白水平在HCC中上调,但PRMT1 mRNA水平没有变化。推测泛素-蛋白酶体降解可能参与PRMT1的上调。用两种不同的蛋白酶体抑制剂处理细胞,发现PRMT1蛋白水平呈剂量依赖性增加(图1a),表明PRMT1的蛋白水平可以通过泛素介导的降解来调节。 第二步,确定PRMT1降解的关键泛素连接酶 根据设计的筛选策略,E3泛素连接酶FBXO7为候选互作蛋白(图1b-c)。IP-MS分析显示FBXO7是前10个与PRMT1相互作用的候
  • 0
    展会序言: 畜牧业是关系国计民生的重要产业,是农业农村经济的支柱产业,是保障食物安全和居民生活的战略产业,是农业现代化的标志性产业。为进一步推进西部及全国畜牧业高质量发展,构建畜牧业绿色低碳高质量发展新格局,促进西部地区畜牧业的交流与合作,展示最新科技成果,推动产业转型升级,我们诚挚地邀请您参加即将于2024年11月29-30日在重庆国际博览中心举办的“2024西部畜牧业展览会”。本届畜博会立足西部,辐射全国,预计展
  • 0
    基于TCGA、GEO肺腺癌数据集,使用ssGSEA分析发现NSD3与糖酵解呈负相关(图1a)。过表达或敲除NSD3发现,NSD3抑制糖酵解酶(图1b-c)。此外,NSD3能抑制乳酸生成和葡萄糖消耗(图1d-g)。进一步挽救实验表明NSD3通过抑制HK2来抑制LUAD的糖酵解(图1h-i)。 更多详细内容分享请查阅:【《Adv Sci》老树新花:组蛋白甲基转移酶的非表观功能!NSD3在抑制肺腺癌糖酵解中的作用机理】。 如有相关机制研究,包括免疫沉淀试验(IP、RIP、CHIP、CHIRP)和蛋白组芯片检测
  • 0
    一、百萤活性氧Cell Meter线粒体羟基自由基检测试剂盒简介 细胞内羟基自由基的检测对于理解适当的细胞氧化还原调节及其失调对各种病理的影响至关重要。羟基(HO·)是与其他分子高度反应的活性氧(ROS)之一,以实现稳定性。通常,羟基被认为是氧化代谢的有害副产物,其可以在生命系统中引起分子损伤。它显示平均寿命为10-9秒,可以与几乎所有生物分子如核DNA,线粒体DNA,蛋白质和膜脂质发生反应。 MitoROS OH580是活细胞渗透探针,可以快速和选
  • 0
    肺癌仍然是全球癌症相关死亡的主要原因。肺腺癌(LUAD)是肺癌的一种常见亚型,约占肺癌的40%。组蛋白甲基转移酶NSD3在大多数肿瘤中发挥了必要的表观遗传调控机制,但NSD3是否参与肺腺癌的发生发展尚不清楚。 2024年8月,中南大学刘双及石颖共同通讯在Adv Sci(IF=14.3)上,发表“Histones Methyltransferase NSD3 Inhibits Lung Adenocarcinoma Glycolysis Through Interacting with PPP1CB to Decrease STAT3 Signaling Pathway”的研究成果。揭示NSD3在肺腺癌的发展中的非表观遗传调节作用
  • 0
    在数字化浪潮汹涌的今天,科技行业以其独特的魅力和无限的可能性,正以前所未有的速度改变着我们的生活、娱乐乃至商业模式。提及“杭州蕊纽生物科技有限公司”,这不仅是一个企业的名字,更是一个梦想与创意交织的舞台,一个让无数梦想照进现实的璀璨之地。 随着互联网技术的飞速发展,直播从最初的边缘化娱乐形式,逐渐成长为影响深远的文化现象和经济力量。同时,通过引入专业的制作团队和技术支持,不断提升直播画面的清晰度和互动体验,让观
  • 0
    IP去泛素化类型检测实验发现,LKB1的泛素化修饰主要发生在K6链泛素化,而不是传统的K48和K63位点(图1e-h)。 更多详细内容分享可查阅:【国刊之光《STTT》(IF=39):基于去泛素酶的药靶开发转化。JOSD2解除LKB1复合体活性促进肺癌发生】 。 如您有泛素相关机制研究,欢迎留言探讨。
  • 0
    型号W9508 CPU:intel 8352V 2.1GHz 36核 *2 GPU:4090 24G*8(单卡2槽位) 内存:64G*16 DDR4 RECC3200 硬盘:480G SSD*2,7.68T NVME*1 raid卡:2G缓存,支持raid0、1、5 网卡:双10G电口*1,双25G光口*1(配4个25G-mm850-D多模光模块) 电源:2700W*4 电源线:C13转C14 10A 1.5米电源线*4 有需要直接私信
  • 0
    1.什么是DiI?它的用途是什么? 答:DiI即DiIC18(3)是常见的细胞膜荧光探针之一,全称为1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 。呈现橙红色荧光。DiI是一种亲脂性膜染料,进入细胞膜后可以侧向扩散逐渐使整个细胞的细胞膜被染色。DiI在进入细胞膜之前荧光非常弱,仅当进入到细胞膜后才可以被激发出很强的荧光。DiI被激发后可以发出橙红色的荧光。它的家族还有DiR、DiO、DiA、DiS、DiD。 2.如何区别DiI探针中的C12、C16、C18? 答:从水溶性
  • 0
    细胞描述 前列腺癌细胞,该细胞能产生逆转录病毒需要在生物安全等级2级的实验室环境中操作细胞。22RV1细胞表达前列腺特异抗原PSA。二羟基睾丸脂酮可轻微刺激细胞生长,经western blot检测溶解产物与雄激素受体抗体起免疫反应。EGF可刺激细胞生长,但TGF-β1不能抑制细胞生长。近期证实22RV1可生产高滴度的人逆转录病毒XMRV。在裸鼠体内可成瘤。 细胞特性 1)来源:前列腺 2)含量:>1x106细胞数 3)形态:上皮样,贴壁细胞 4)规格:T25瓶或者1mL冻存
  • 0
    第一步,初步确定OTUD5潜在的底物蛋白 作为去泛素化酶(DUB),OTUD5通过去泛素化底物蛋白起作用。利用IP-MS鉴定潜在的互作蛋白(图1a)。质谱鉴定的前15个潜在结合蛋白中,TAK1被证实在足细胞炎症和DKD进展中具有关键的调节作用(图1b)。因此,假设OTUD5通过去泛素化TAK1在足细胞中负调控炎症和损伤。 第二步,确定TAK1与OTUD5相互作用 内源性Co-IP实验证实,OTUD5与TAK1在细胞和小鼠肾组织均存在相互作用(图1c-d)。同时,外源性Co-IP实验也显示,OTUD5与T
  • 0
    AARS1作为一种蛋白质乳酸转移酶,使用乳酸作为直接的乳酸供体 第一步,AARS1与乳酸存在结合 分子对接预测乳酸可以很容易地结合到AARS1的催化口袋上(图1a)。等温滴定量热法验证了该结果(图1b)。 第二步,确定AARS1是一种乳酸转移酶 体外乳酸化实验,显示AARS1能够以依赖于乳酸和ATP的方式直接使组蛋白H3和H4乳酸化(图1c);质谱分析,显示AARS1能直接在K18处乳酸化H3肽(图1d)。AARS1催化袋内氨基酸残基突变体(5M)消除了其乳酸转移酶活性(图1c-d
  • 0
    UBE2C促进SNAT2的单泛素修饰,抑制其多泛素修饰。 检测步骤: 第一步,筛选UBE2C蛋白底物SNAT2 IP-MS和泛素蛋白质组学检测发现:SNAT2是UBE2C泛素修饰的底物(图1a)。 第二步,UBE2C与SNAT2相互作用 Co-IP等实验检测证实UBE2C与SNAT2相互作用(图1 b-c)。 第三步,发现UBE2C促进SNAT2的单泛素化,阻断K63连接的泛素链的延伸 Co-IP分析显示发现UBE2C促进SNAT2的单泛素化,但阻断了泛素链的延伸(图1 d-e)。分别构建不同泛素突变体Ub-WT,K6R,K11R,K 27R, K29R, K33R,K48R,K63R(基
  • 0
    型号W9508 CPU:intel 8352V 2.1GHz 36核 *2 GPU:4090 24G*8(单卡2槽位) 内存:64G*16 DDR4 RECC3200 硬盘:480G SSD*2,7.68T NVME*1 raid卡:2G缓存,支持raid0、1、5 网卡:双10G电口*1,双25G光口*1(配4个25G-mm850-D多模光模块) 电源:2700W*4 电源线:C13转C14 10A 1.5米电源线*4
  • 0
    使用HA-Ub-WT/KO泛素修饰系统检测修饰类型:使用HA-Ub-WT和HA-Ub-KO(K6,K11,K27,K29,K33,K48和K63)载体,分别与泛素连接酶(E3)和修饰底物共转染细胞,通过CoIP-WB检测底物泛素化水平,明确泛素连接酶对修饰底物的泛素修饰类型。或再次使用HA-Ub-WT(K6R,K11R,K27R,K29R,K33R,K48R和K63R)载体,分别与泛素连接酶(E3)和修饰底物共转染细胞,通过CoIP-WB检测底物泛素化水平,再次明确泛素连接酶对修饰底物的泛素修饰类型。 使用靶蛋白修饰位点突变鉴定

  • 发贴红色标题
  • 显示红名
  • 签到六倍经验

赠送补签卡1张,获得[经验书购买权]

扫二维码下载贴吧客户端

下载贴吧APP
看高清直播、视频!

本吧信息 查看详情>>

会员: 生物百科

目录: 科技周边