我的一个疑问:虚数的实际意义到底是什么?
在狭义相对论中,只要超了光速,时间就会变成虚数,这代表什么呢?
百度百科“虚数”里有一段解释但我看不明白,请高人帮忙求解。
如下:
我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实
虚数轴和虚轴。 不能满足于上述图像解释的同学或学者可参考以下题目和说明: 若存在一个数,它的倒数等于它的相反数(或者它的倒数的相反数为其自身),这个数是什么形式? 根据这一要求,可以给出如下方程: -x = (1/x) 不难得知,这个方程的解x=i (虚数单位) 由此,若有代数式 t'=ti,我们将i理解为从t的单位到t'的单位之间的转换单位,则t'=ti将被理解为 -t' = 1/t 即 t' = - 1/t 这一表达式在几何空间上的意义不大,但若配合狭义相对论,在时间上理解,则可以解释若相对运动速度可以大于光速c,相对时间间隔产生的虚数值,实质上是其实数值的负倒数。也就是所谓回到过去的时间间隔数值可以由此计算出来
在狭义相对论中,只要超了光速,时间就会变成虚数,这代表什么呢?
百度百科“虚数”里有一段解释但我看不明白,请高人帮忙求解。
如下:
我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实
虚数轴和虚轴。 不能满足于上述图像解释的同学或学者可参考以下题目和说明: 若存在一个数,它的倒数等于它的相反数(或者它的倒数的相反数为其自身),这个数是什么形式? 根据这一要求,可以给出如下方程: -x = (1/x) 不难得知,这个方程的解x=i (虚数单位) 由此,若有代数式 t'=ti,我们将i理解为从t的单位到t'的单位之间的转换单位,则t'=ti将被理解为 -t' = 1/t 即 t' = - 1/t 这一表达式在几何空间上的意义不大,但若配合狭义相对论,在时间上理解,则可以解释若相对运动速度可以大于光速c,相对时间间隔产生的虚数值,实质上是其实数值的负倒数。也就是所谓回到过去的时间间隔数值可以由此计算出来