Viewpoint: Positrons Galore (by S.Coutu)
The first results from the space-borne Alpha Magnetic Spectrometer confirm an unexplained excess of high-energy positrons in Earth-bound cosmic rays.
Antimatter is rare in the universe today. As far as we know, all relic antimatter produced in the big bang disappeared long ago in annihilation reactions with matter particles. What this means is that any antimatter particles that we can detect in the flux of energetic cosmic rays near Earth must have been created by “new” sources within our Milky Way Galaxy. (Antimatter particles from extragalactic sources are also conceivable, but they are exceedingly unlikely to make it to Earth before losing all their energy or annihilating.) Because there is a limited amount of energetic antimatter from space raining down upon the Earth, antiparticles serve as unique messengers of high-energy phenomena in the cosmos, or signatures of exotic new physics.
The first results from the space-borne Alpha Magnetic Spectrometer confirm an unexplained excess of high-energy positrons in Earth-bound cosmic rays.
Antimatter is rare in the universe today. As far as we know, all relic antimatter produced in the big bang disappeared long ago in annihilation reactions with matter particles. What this means is that any antimatter particles that we can detect in the flux of energetic cosmic rays near Earth must have been created by “new” sources within our Milky Way Galaxy. (Antimatter particles from extragalactic sources are also conceivable, but they are exceedingly unlikely to make it to Earth before losing all their energy or annihilating.) Because there is a limited amount of energetic antimatter from space raining down upon the Earth, antiparticles serve as unique messengers of high-energy phenomena in the cosmos, or signatures of exotic new physics.