盛衰变效应吧 关注:325贴子:9,910
  • 6回复贴,共1

量子场论简介-转自量子场论吧

只看楼主收藏回复

量子场论是量子力学和经典场论相结合的物理理论,已被广泛的应用于粒子物理学和凝聚态物理学中。量子场论为描述多粒子系统,尤其是包含粒子产生和 湮灭过程的系统,提供了有效的描述框架。非相对论性的量子场论主要被应用于凝聚态物理学,比如描述超导性的BCS理论。而相对论性的量子场论则是粒子物理 学不可或缺的组成部分。自然界目前人类所知的有四种基本相互作用:强作用,电磁相互作用,弱作用,引力。除去引力,另三种相互作用都找到了合适满足特定对 称性的量子场论来描述。强作用有量子色动力学(QCD,Quantum Chromodynamics);电磁相互作用有量子电动力学 (QED,Quantum Electrodynamics),理论框架建立于1920到1950年间,主要的贡献者为保罗·狄拉克,弗拉迪米尔·福克, 沃尔夫冈·泡利,朝永振一郎,施温格,理查德·费曼和迪森等;弱作用有费米点作用理论。后来弱作用和电磁相互作用实现了形式上的统一,通过希格斯机制 (Higgs Mechanism)产生质量,建立了弱电统一的量子规范理论,即GWS(Glashow, Weinberg, Salam)模型。量子 场论成为现代理论物理学的主流方法和工具。


1楼2013-05-18 15:54回复
    所谓“量子场论”的学科是从狭义相对论和量子力学的观念的结合而产生的。它和标准(亦即非相对论性)的量子力学的差别在于,任何特殊种类的粒子的数目不必 是常数。每一种粒子都有其反粒子(有时,诸如光子,反粒子和原先粒子是一样的)。一个有质量的粒子和它的反粒子可以湮灭而形成能量,并且这样的对子可由能 量产生出来。的确,甚至粒子数也不必是确定的;因为不同粒子数的态的线性叠加是允许的。最高级的量子场论是“量子电动力学”--基本上是电子和光子的理 论。该理论的预言具有令人印象深刻的精确性(例如,上一章已提到的电子的磁矩的精确值,参阅177页)。然而,它是一个没有整理好的理论--不是一个完全 协调的理论--因为它一开始给出了没有意义的“无限的”答案,必须用称为“重正化”的步骤才能把这些无限消除。并不是所有量子场论都可以用重正化来补救 的。即使是可行的话,其计算也是非常困难的。


    2楼2013-05-18 15:54
    回复
      使用“路径积分”是量子场论的一个受欢迎的方法。它是不仅把不同粒子态(通常的波函数)而且把物理行为的整个空间--时间历史的量子线性叠加而形成的(参阅费因曼1985年的通俗介绍)。但是,这个方法自身也有附加的无穷大,人们只有引进不同的“数学技巧”才能赋予意义。尽管量子场论勿庸置疑的威力和印象深刻的精确度(在那些理论能完全实现的很少情况),人们仍然觉得,必须有深刻的理解,才能相信它似乎是导向“任何物理实在的图像”。


      3楼2013-05-18 15:54
      回复
        根据量子力学原理建立的场的理论,是微观现象的物理学基本理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。场的物理性质可以用一些定义在全空间的量描述〔例如电磁场的性质可以用电场强度和磁场强度或用一个三维矢量势A(X,t)和一个标量势嗘(X,t)描述〕。这些场量是空间坐标和时间的函数,它们随时间的变化描述场的运动。空间不同点的场量可以看作是互相独立的动力学变量,因此场是具有连续无穷维自由度的系统。场论是关于场的性质、相互作用和运动规律的理论。量子场论则是在量子物理学基础上建立和发展的场论,即把量子力学原理应用于场,把场看作无穷维自由度的力学系统实现其量子化而建立的理论。量子场论是粒子物理学的基础理论并被广泛地应用于统计物理、核理论和凝聚态理论等近代物理学的许多分支。


        4楼2013-05-18 15:54
        回复
          在考虑相互作用后,目前一般还不能求得量子场论方程的精确解,必须采用近似计算方法。较早发展起来的量子场论的计算方法是在量子电动力学中首先采用的微扰的方法。在量子电动力学中,考虑到电子场和电磁场相互作用的耦合常数(即电子的电荷) e是一个小量,把哈密顿量中代表相互作用的项作为对自由场哈密顿量的微扰来处理。这样各种反应过程的振幅可表成耦合常数 e的幂级数,微扰论方法是逐阶计算幂级数的系数。考虑到耦合常数很小,只要计算幂级数的前面几个低次项,就可以得到足够精确的近似结果。在一般的量子场论问题中,如果耦合常数足够小,也可以类似地用微扰论的方法处理。1946~1949年朝永振一郎、J.S.施温格和费因曼等人发展一套新的微扰论计算方法,这种微扰论方法具有形式简单、便于计算并且明显保持相对论协变性的优点。特别是,费因曼引入了图形表示法和相应的物理图像,提供了写出微扰论任意阶项的系统的方法——而且这种方法有很强的直观性。


          5楼2013-05-18 15:55
          回复
            在用量子电动力学计算任何物理过程时,尽管用微扰论最低级近似计算的结果和实验是近似符合的,但进一步计算高次修正时却都得到无穷大的结果。同样的问题也存在于其他的相对论性量子场论中,这就是量子场论中著名的发散困难。它的根源在于:在现在的相对论性量子场论中,微观粒子实际上被看作一个点。即使在经典场论中,如果把电子看作一个点,由电子产生的电磁场对本身的作用而引起的电磁质量也是无穷大的。在量子场论中发散有更多的形式,它们都起源于粒子产生的场对本身的自作用。发散困难的存在表示现在的量子场论不能应用到很小的距离。曾经有不少修改量子场论基本假设的尝试,但都不成功。除这种尝试外,还应当注意到微观粒子可能并不真正是基本的,它们如果具有占有一定体积的内部结构,也必须会改变点粒子场论在小距离处的结果。在现有量子场论的框架内,发散困难用重正化的方法得到部分的解决。现有的量子场论可以分为两类。在第一类场论中所有的发散因子都可以归结为少数几个物理参量的发散。如果重新调整这几个参量,使它们取实验要求的数值,对其他的物理量仍可用现有的理论计算,如果按重正化的耦合常数作微扰展开就可以得到有限的结果。这类理论称为可重正化的。量子电动力学属于这一类。在量子电动力学中,只有电子的质量和电荷需要重正化。重正化计算的合理性在于:如果理论需要作的修改只限于充分小的距离范围之内,这些不发散的物理量受到的影响是很小的。另一类理论中有无穷多个物理参量发散,这类理论称为不可重正化的。至少现在还没有办法用不可重正化的理论作包括粒子自作用的计算。1949年左右,施温格和费因曼等人首先用新式的微扰论作量子电动力学中的重正化计算。重正化的普遍理论及其严格证明经过H.H.博戈留博夫、O.C.帕拉修克、K.赫普和W.齐默尔曼等人的研究在60年代中才完成。量子电动力学的重正化微扰论计算在很高的精度上与电子和μ子的反常磁矩(见μ子和电子回磁比)及原子能级的兰姆移位的实验符合,迄今量子电动力学通过了所有实验的考验,这些实验表明量子电动力学在大于10-16cm处是正确的。量子电动力学的成功是重正化量子场论的实验证实。


            6楼2013-05-18 15:55
            回复
              处理量子场论问题的微扰论方法有它的局限性,它要求耦合常数很小,即属于弱耦合的情况。耦合强到一定程度后微扰论展开式的头几项就不再是好的近似。因此在量子场论发展过程中已经针对不同问题的需要发展了许多种非微扰方法,如色散关系理论、公理化场论、流代数理论、半经典近似方法、重正化群方法、格点规范理论等。这些方法的出发点各不相同,基本上可以归为两类。一类是直接根据场论的基本原理和普遍的对称性要求,给出一般的限制和预言。这类理论的典型例子是色散关系理论和公理化场论。这种做法虽然比较严格,但正因为是普遍的讨论,就不可能对许多具体问题作出细致的回答,所得的结果有很大的局限性。另一类是找寻另一种近似方案,用另一个小参量代替耦合常数来作某种近似处理。因为作近似时不再以耦合常数的幂次为依据,所以有时对强耦合也能应用。例如,格点规范理论的强耦合展开式就带有这样的特点。这样的理论虽然可以解除微扰论所受的限制,但却受这种理论本身所取近似条件的限制。现在还没有非常有力的非微扰方法。近年来在格点规范理论的研究中发展了用有限的点阵上的量代替无限的连续的时空中的场,利用电子计算机作蒙特—卡罗模拟的方法。虽然这不再是无穷维自由度的系统,如果所取点阵的尺度与所研究的现象有关的主要过程作用的范围相当,它不失为一种量子场论的近似方法。


              7楼2013-05-18 15:55
              回复