首先驼1000根萝卜前进x1公里放下1000-2*x1根后带走剩下的x1根返回;
然后驼1000根萝卜前进,至x1公里处取x1根萝卜,让驴子恰好驼1000根萝卜;继续前进至距起点x2公里处,放下1000-2*(x2-x1)根萝卜再返回,到x1公里处恰好把萝卜吃完,再取x1根萝卜返回起点;
最后驼走一千根萝卜,行至x1、x2处依次取走所有萝卜,再行至终点.
x1、x2处剩余的萝卜分别小于等于x1和(x2-x1),在这个不等式约束条件下,求得两处剩余萝卜的最大值即可,因为实际上两处剩余的萝卜个数就是最终能够到达终点的萝卜个数.最后求的x1=200,x2=1600/3.驴走过的总路程是2*x1+2*x2+1000=2466+2/3,按题意是走完一公里才吃一根萝卜,也就是吃掉的萝卜总数为里程数向下取整,为2466,所以最终剩下能卖掉的萝卜是3000-2466=534