先给出定义:称两个群同态,若存在一个映射(称为同态映射)可以保持群的运算。f(ab)=f(a)f(b)
若同态映射是一个双射,称为同构。
举个例子:R是全体实数的加法群,R+是全体正实数的乘法群。定义R到R+的映射f,f(a)=2^a
由于f(a+b)=2^(a+b)=2^a2^b,所以f保持运算,是一个同态映射。
进一步,f还是双射。从而f是同构。
同构将单位元变为单位元,将逆元变为逆元。
同态的核:群G与H同态,f为其同态映射,e是H的单位元。集合K={g|f(g)=e}为f的核。
说白了,核就是能够被映射f变成单位元的元素。
举个例子:
刚才给出的R到R+的同构映射f的核:R+是全体正实数的乘法群,单位元是1。只有2的0次方才是1,所以f的核只有一个元素:单位元0
这个例子中同构映射f的核是单位元并不是偶然的,只要是同构,核都是单位元。
另外核是单位元可以推出同态是单射。如果已经证明了是满射,那么就可以得出映射是同构。
若同态映射是一个双射,称为同构。
举个例子:R是全体实数的加法群,R+是全体正实数的乘法群。定义R到R+的映射f,f(a)=2^a
由于f(a+b)=2^(a+b)=2^a2^b,所以f保持运算,是一个同态映射。
进一步,f还是双射。从而f是同构。
同构将单位元变为单位元,将逆元变为逆元。
同态的核:群G与H同态,f为其同态映射,e是H的单位元。集合K={g|f(g)=e}为f的核。
说白了,核就是能够被映射f变成单位元的元素。
举个例子:
刚才给出的R到R+的同构映射f的核:R+是全体正实数的乘法群,单位元是1。只有2的0次方才是1,所以f的核只有一个元素:单位元0
这个例子中同构映射f的核是单位元并不是偶然的,只要是同构,核都是单位元。
另外核是单位元可以推出同态是单射。如果已经证明了是满射,那么就可以得出映射是同构。