@贴吧用户_GbAM92M
原式化简得 3an²+(3a+2b)n+a+b+c=n²
可得一个三元一次方程组,即
3a=1,
3a+2b=0,
a+b+c=0.
解得 a=1/3, b=-1/2, c=1/6.
代入原式即 1/3(n+1)³-1/2(n+1)²+1/6(n+1)-1/3n³+1/2n²-1/6n=n²
当n=2时,2²=1/3×3³-1/2×3²+1/6×3-1/3×2³+1/2×2²-1/6×2;
当n=3时,3²=1/3×4³-1/2×4²+1/6×4-1/3×3³+1/2×3²-1/6×3;
当n=4时,4²=1/3×5³-1/2×5²+1/6×5-1/3×4³+1/2×4²-1/6×4;
......
当n=29时,
29²=1/3×30³-1/2×30²+1/6×30-1/3×29³+1/2×29²-1/6×29;
当n=30时,
30²=1/3×31³-1/2×31²+1/6×31-1/3×30³+1/2×30²-1/6×30;
上式合并消去中间项得
2²+3²+4²+...+29²+30²
=1/3×31³-1/2×31²+1/6×31-1/3×2³+1/2×2²-1/6×2
=2/6×31³-3/6×31²+1/6×31-8/3+2-1/3
=[31²×(31×2-3)+31]/6-1
=31×(31×59+1)/6-1
=31×305-1
=9454.
按照你的方法,这样对吧?